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ABS TRACT

dynamics of a parachutist is discussed. Results of a

computer simulation and a parameter study are presented. A

variety of initial parachutist configurations prior to "opening

shock" are considered and the relative effects upon the parachutist's

dynamics -- particularly, the head/neck system dynamics -- are

studied. Optimal initial (pre-opening) configurations which mini-

mize the subsequent force and moment pulses experienced by the

head/neck system, are identified and discussed. Application in

parachute design and in developing jumping strategies are also

"discussed.
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NOTATION

aik - Governing differential equation coefficients (See Equation (5).)

aj - Acceleration of G; in a Newtonian reference frame

A - Projected profile area of body B

B - A typical body of the system

C - Drag coefficient
D

D - Resultant air drag force on body Bj (See Equation (1).)

f - Generalized force array (See Equation (5).)

jF - Inertia force on BC (See Equation (3).)

G - Mass center of body B

L - Point of application of the left riser force (See Figure 1.)

% - Mass oL B1I aJ - A unit vector parallel to the axis ofB

R - Point of application of the right rise: force (See Figure 2.)

V - Velocity of GC relative to the air and perpendicular to the

axis of body B1 (See Equation (2).)

SYW - Ambiex-t air velocity

X ,Y ,Zj - Coordinate axes of body B

ýj - Angular acceleratiýon of Bj in a Newtonian reference frame
P - Mass density of air

I•k - Generalized coordinates

Ij - Angular velocity of B1 in a Newtonian reference frame

k3
4
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INTRODUCTION

This report presents the results of a computer-aided parameter study

on parachutist dynamics. Particular attention is given to head/neck

dynamics. The objective of the parameter study is to obtain optimal

initial configurations, prior to opening shock, which will minimize the

forces and moments experienced by the head/neck system.

During the past decade, there has been an increasing interest in

parachutist dynamics during and immediately after the opening of the

parachute. This interest stems from the high incidence of injuries

occurring in emergency egress from high speed aircraft. Since most of

the permanent disabilities are the result of injuries to the head/neck

system, the major concern of researchers has been the parachutist's

head/neck dynamics. These interests and concerns have stimulated the I
development of a number of experimental studies of parachutist response.

These studies have used both volunteers and dummies in a variety of

jumping configurations. A summary ,of some of these experiments are con-

tained in papers by Palmer, Call, and Ewing [1,21*. Also, studies on

K]l opening shock and parachute opening theory have been conducted by Heinrich

and Saari [3]. Performance data for various types oi parachute assemblies

and harnesses has been tabulated by Woolman [4].

In a recent paper, Huston, Winget, and Harlow [5] suggested that it

may be possible to obtain analytical simulation of parachutist dynamics

I,' f*Numbers in brackets refer to references at the end of the report.
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by using a biodynamic computer model of the parachutist. IndeeA, by

using a modified version of the UCIN Crash Victim computer model [6-10],

they were able to exhibit a reasonably close correspondence between

analytical and experimental data. These encouraging results were a

wotivating factor for the parameter study summarized in this report.

The report itself is divided into three parts with the following part

providing a description of the biodynamic model and the forces applied to

it. This is followed by a description of the governing dynamical equations.

The final part provides a summary of the results as well as conclusions

regarding optimal initial configurations.
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THE BIODYNANIC PARACHUTIST MODEL

Figure 1. contains a schematic representation of the model. It

consists of a system of connected rigid bodies simulating the human frame.

The arms and legs are represented by frustrums of elliptical cones. The

torso and neck are elliptical cylinders and the head is a spheroid. The

bodies are connected by spherical joints. Nonlinear springs and dampers

are used between adjacent bodies to simulate the ligaments and muscles

* and to limit the range of motion [7,10,11].

The model has 13 bodies and thus it has 42 degrees of freedom (3

rotational degrees of freedom for each body and a translational degree of

freedom for a reference body, say BI). This model is a modification of the

model used in Reference [5]. The difference is the inclusion of a neck

segment, thus improving the accuracy of the modelling.

S'The model allows for the arbitrary specification of external forces

and moments on each of its bodies. For a parachut'st, the externally-applied

"forces are gravity forces, the riser forces, and ae wind or air drag forces.

The gravity forces may be represented as vertical (downward) forces passing

through the respective mass centers of the bodies. The riser forces are

assumed to be applied at the shoulders at points L (left riser) and R (right

riser) as shown in Figure 1. The direction of the riser forces is assumed

to be opposite to the direction of the velocities of L and R relative to

the air. Finally, the air drag forces are represented on each body by a

j •single force passing through the mass center of the body and directed

16



opposite to the direction of the velocity of the mass center relative to

the air. Specifically, if B is a typical body of the system as shown in

Figure 2., then the air drag force D on B is given by:

.j - -PCD AjIVj IV1

where J-1,...,13, and where p is the mass density of the air, CD is the

drag coefficient (dependent upon the Reynolds number), A is the projected

profile area of Bi. and V• is the component of the velocity of B3 relative

to the air and perpendicular to the axis of B If V is the ambient air
V -W

velocity, Vj is given by:

VJ - nxjX[(Yj - Vw)Xnj] (2)

where n is a unit vector parallel to the axis of B as shown in Figure 2.

The inertia forces acting on the bodies oe the model due to their

motion in a Newtonian reference frame may be repreuented on each body B

* by a single force F passing through Gi, the mass center of Bt ogether

with a couple with torque Tj. Fj and Tj may be expressed as [12]:

SF i--mi (3)
-j

and

I :-j - 'j - .jX( j- ) (

7
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where j-l,...,l3. and where m is the mass of B, Ij is the inertia

dyadic of B relative to G is the acceleration of G is the angular

velocity of B1 , and a s the angular acceleration of B -- all measured

relative to a Newtonian reference frame.

Finally, each body B1 of the system has a coordinate axes system

X YZ (J-l,...,13) where X is forward, Y is to the left, and Z is

upward. In a reference configuration of the model, as in Figure 1, the

respective coordinate axes are parallel.

8
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GOVERNING EQUATIONS

When the model is subjected to the forces outlined above, the governing

dynamical equations of motion may be conveniently obtained by using Lagrange's

form of d'Alembert's principle as developed by Kane et.al. [12-141. This

principle, a virtual work type principle, leads to governing equations whose

coefficients are readily converted into algorithms for numerical generation

on a computer. Such algorithms have been written resulting in several

computer codes called UCIN[5-10,15,16]. In one of these codes, called

"PARACHUTE," the governing differential equations take the form:

42

akk m f1  (i-i,... ,42) (5)

k-l

where the k (k-l,...,42) are generalized coordinates corresponding to the

degrees of freedom of the system and aik and fi are g:nedilized inertia and

force arrays. The system of Equations (5) is a coupled system of non-

• linear stiff ordinary differential equations. The system may be integrated

numerically using a differential equation solver routine. In the current

parameter study, a fourth order Runge-Kutta technique called PKGS was
used to numerically integrate the equations.
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RESULTS AND CONCLUSIONS

The parachutist model and its accompaning computer code described

above were used in making a parameter study of a parachutist in a variety

of initial configurations, prior to opening shock, for a typical low-

speed Jump, without ambient wind. The riser force data for the study

were obtained from experimental data from volunteer jumps at the Naval

Air Recovery Facility at El Centro, CA. The physical data for the para-

chutist model were a33o obtained experimentally. In the current study,

it approximated that of a 75th percentile man.

The study was conducted for 3 inclinations of the spine or torso

relative to the vertical and for three initial head and neck inclinations

providing a total of 9 different jumping configurations. Specifically,

the torso was inclined to the vertical at 22.50, 450, and 67.50. The

initial angle between the head and the neck and between the neck and the

upper torso were equal to each other; they have the values -15°, 00, and

150. The initial configurations of the arms and legs were "spread-eagle"

and were the same for all computer runs.

The X, Y, and Z components of the riser forces relative to a Newtonian

* .•reference frame varied only slightly with the iaitial configuration.

Typical values are shown graphically in Figures 3., 4., and 5. Using such

riser forces together with the physical parameters and the initial condi-

tions, the coefficients of the governing differential equations were

"i I computed and the equations were numerically integrated, The results of

this integration were time histories of the generalized coordinates and

10
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their derivatives. These, in turn, were used to determine the head and

neck motion and the internal restraining forces and moments on the head/

neck system. Figures 6. to 17. show the resulting head rotation relative

to the neck and the neck rotation relative to the upper torso for the

various combinations of the initial head, neck, and torso inclination

angles. The "alpha" rotation corresponds to "roll" about the X-axis and

the "beta" rotation corresponds to "pitch" about the Y-axis. Figures 18.

to 29. show the components and magnitude of the resultant restoring force

between the head and neck for the various initial head, neck, and torso

inclination angles. Figures 30. to 38. show the X and Y components and

magnitude of the restraining moment between the head and neck for the

various initial configurations. (The Z components of the moments were

negligible.) Finally, Figures 39., 40., and 41. show the Y component of the

angular acceleration of the head relative to the upper torso for each run.

A careful examination of these figures shows that there is very little

difference between the results for the different initial head and neck

inclination angles. However, there is a difference in the results for

different initial torso inclination angles. Interestingly, it is seen in

Figures 21., 25., and 29. that the smallest peak restoring force magnitude

occurs with a 450 torso inclination angle. This is also the case for the

magnitude of the restoring moment as seen in Figures 32.. 35.. and 38.

Moreover, the peaks occur at approximately 40 and 80 milliseconds, which

corresponds to peak values of the riser force components as seen in

Figures 3., 4., and 5.
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The fact that the initial torso inclination has a greater effect

upon the head/neck dynamics thar, the head and neck inclination may not

be surprising when one considers the relative magnitudes of the masses

and inertias of the torso bodies and the head and neck. This may be

discouraging for a parachutist, since cqntrol of the initial relative

head and neck i.nclination is probably easier than control of the initial

torso inclination. However, for designers of automatic parachute-opening

devices for high-speed egress, these results may be encouraging, since

torso inclination is likely to vary at a more uniform rate than the

head and neck inclination.

12
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